Behavior of flowing granular materials under variable g.

نویسندگان

  • Antje Brucks
  • Tim Arndt
  • Julio M Ottino
  • Richard M Lueptow
چکیده

We consider the impact of the effective gravitational acceleration g{eff} on gravity-driven granular shear flow utilizing a tumbler of radius R rotating at angular velocity omega when g{eff} is varied up to 25 times the gravitational level on Earth in a large centrifuge. The Froude number Fr=omega{2}R/g{eff} is shown to be the proper scaling to characterize the effect of gravity on the angle of repose of the flowing layer. Likewise, transitions between flow regimes depend on Fr. Furthermore, the thickness of the flowing layer is independent of the g level. These results provide a starting point for understanding granular flows on planetary bodies with g{eff} different than on Earth for application to planetary exploration and formation of geologic features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simplified model for static/flowing dynamics in thin-layer flows of granular materials with yield

We introduce a simplified model for thin-layer flows of granular materials with yield. The model is based on a viscoplastic rheology with Drucker-Prager yield stress and describes the dynamics of the velocity profile as well as the transition between static and flowing material. As opposed to most models developed to describe the static/flowing transition in thin-layer flows, the variable Z in ...

متن کامل

Creeping granular motion under variable gravity levels.

In a rotating tumbler that is more than one-half filled with a granular material, a core of material forms that should ideally rotate with the tumbler. However, the core rotates slightly faster than the tumbler (precession) and decreases in size (erosion). The precession and erosion of the core provide a measure of the creeping granular motion that occurs beneath a continuously flowing flat sur...

متن کامل

Probing the shear-band formation in granular media with sound waves.

We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave s...

متن کامل

Effect of interstitial fluid on a granular flowing layer

A dominant aspect of granular flows is flow in thin surface layers. While an understanding of the dynamics of dry granular surface flow has begun to emerge, the case of flow when air is completely replaced by a liquid is largely unexplored. Experiments were performed using particle tracking velocimetry (PTV) in a quasitwo-dimensional rotating tumbler to measure the velocity field within the flo...

متن کامل

Universal scaling for ripple formation in granular media.

The wavelength scaling of ripple patterns formed by granular materials underneath flowing fluids is investigated. Experimental results from five systems involving substantially different experimental conditions are compared to each other. The data analysis reveals that all systems display a common, global scaling behavior for the onset of ripple formation on short time scales. This suggests the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007